No. of Printed Pages: 02 Roll No.

DD311

M. Sc. EXAMINATION, 2020

(Fourth Semester)

(B Scheme) (Re-appear)

MATHEMATICS

MAT602B

Functional Analysis

Time: 3 Hours [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- **1.** (a) Every metric on a vector space can be obtained from a norm. Prove or disprove this statement.
 - (b) State and prove Minkowski inequality.
- **2.** Prove that C[a, b] is a Banach space.

Unit II

- 3. (a) State and prove Hahn Banach extension theorem (Real form).
 - (b) State and prove uniform boundedness principle.

- **4.** (a) State and prove Riesz representation theorem for bounded linear functional on L^p .
 - (b) State and prove closed graph theorem.

Unit III

- **5.** (a) Define a Compact Operator. Prove that a compact operator is bounded (Continuous) operator.
 - (b) Let $\{T_n\}$ be a sequence of compact operators from a normed space N into a Banach space B. If $||T_n T|| \to 0$ as $n \to \infty$, then T is compact.
- **6.** (a) State and prove Banach contraction principle.
 - (b) State and prove Picard-Lindeloff theorem.

Unit IV

- 7. (a) State and prove Schwarz's inequality.
 - (b) State and prove Projection theorem.
- **8.** (a) State and prove Riesz representation theorem for continuous functionals on a Hilbert space.
 - (b) Explain Gram-Schmidt orthogonalization process.