- (ii) If dim $X = \infty$, X is a normed linear space, then identify operator is not compact.
- (b) Let X and Y be normed spaces and $T: X \to Y$ be a linear operator. Then T is compact iff it maps every bounded sequence $\langle Tx_n \rangle$ in X onto a sequence $\langle Tx_n \rangle$ in Y which has a convergent subsequence.
- 6. (a) Define fixed point. State and prove
 Banach contraction principle. 10
 - (b) State and prove Picard's Theorem. 10

Unit IV

- 7. (a) Define inner product space and Hilbert space. Further, state and prove Schwarz inequality in a Hilbert space H.
 - (b) A closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.

4

No. of Printed Pages: 05

Roll No.

DD311

M. Sc. EXAMINATION, May 2019

(Fourth Semester)

(B. Scheme) (Main & Re-appear)

MATHEMATICS

MAT602B

Functional Analysis

Time: 3 Hours]

[Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(2-28/5) M-DD311

P.T.O.

M-DD311

Unit I

- 1. (a) Define normed linear spaces. Prove that a normed linear space is a metric space with respect to metric d defined by d(x, y) = ||x y|| for all $x, y \in \mathbb{N}$. 10
 - (b) State and prove Holder's inequality for sequence. 10
- 2. (a) If M is a closed linear subspace of a normed linear space N, then the quotient space N/M is a normed linear space with norm of each coset x + M defined by:

$$||x + M|| = \inf \{||x + M|| m \in M\}$$

Further if N is a Banach space, then the quotient space N/M is also a Banach space with above defined norm. 10

(b) Let N and N' be normed linear spaces and let T be a bounded linear transformation of N into N'. Put:

2

$$a = \sup\{\|Tx\| : x \in \mathbb{N}, \|x\| = 1\}$$

M-DD311

$$b = \sup \left\{ \frac{\|Tx\|}{\|x\|} : x \in \mathbb{N}, x \neq 0 \right\}$$

$$c = \inf \left\{ K : K \ge 0 : \|Tx\| \le k \|x\| \forall x \in \mathbb{N} \right\}$$
Then $\|T\| = \|a\| = b = c$.

Unit II

- 3. (a) State and prove Hahn Banach theorem for reals.
 - (b) Define second conjugate and reflexive spaces.4
- 4. (a) State and prove open mapping theorem.

 16
 - (b) (i) Define graph of f on a linear transformation from N to N', where N and N' are normed linear spaces.
 - (ii) Define equivalent norm. 4

Unit III

- **5.** (a) Define compact operator and prove the following:
 - (i) Every compact operator from a normed linear space X to normed linear space Y is continuous. 10

(2-28/6) M-DD311

3

P.T.O.

- **8.** (a) If M is a closed linear subspace of a Hilbert space H, then $H = M \oplus M^{\perp}$. **10**
 - (b) If $\{e_i\}$ is an orthogonal set in a Hilbert space H, then : 10

$$\sum \left| \left\langle x, e_i \right\rangle \right| \le \left\| x \right\|^2 \ \forall \ x \in \mathbf{H}$$

- **8.** (a) If M is a closed linear subspace of a Hilbert space H, then $H = M \oplus M^{\perp}$. **10**
 - (b) If $\{e_i\}$ is an orthogonal set in a Hilbert space H, then : 10

$$\sum |\langle x, e_i \rangle| \le ||x||^2 \ \forall \ x \in \mathbf{H}$$

M-DD311 5 100 (2-28/7) M-DD311 5 100