18DD1901

M.Sc. EXAMINATION, 2020

(Fourth Semester)

(C Scheme) (Re-appear)

MATHEMATICS

MAT602C

Inner Product Spaces and Advanced Measure Theory

Time: 2½ Hours] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Four* questions in all. All questions carry equal marks.

- **1.** (a) Prove that a closed convex subsets C of a Hilbert space H contains a unique vector of smallest norm.
 - (b) State and prove Bessel's inequality for countable orthonormal sets.
- **2.** (a) State and prove Projection theorem.
 - (b) State and prove Riesz representation theorem in Hilbert spaces.
- 3. Prove that if H is a Hilbert spaces then it is reflexive.
- **4.** (a) Prove that an operator T on a Hilbert space H is self adjoint iff (Tx, x) is real for all x.
 - (b) Prove that an operator T on a Hilbert space H is unitary iff it is an isometric isomorphism of H onto itself.

(D20)(2)M-18DD1901

P.T.O.

- 5. (a) Define signed measure and state and prove Hahn decomposition theorem.
 - (b) State and prove Lebesgue decomposition theorem.
- **6.** State and prove Radon–Nikodyn theorem.
- 7. (a) Discuss the following Lp spaces. State and prove Jensen's inequalities.
 - (b) State and prove Caratheodory extension theorem.
- **8.** (a) Discuss Bairemeasure, continuous functions with compact support and regularity of measure on locally compact spaces.
 - (b) State and prove Riesz-Markoff theorem.
- 9. (i) State and prove Schwarz's inequality.
 - (ii) Define orthogonal and orthonormal sets.
 - (ii) Define adjoint and self adjoint of an operator.
 - (iv) Define mutually signed measure.
 - (v) Define Lebesgue-Stieltjes integral and Mutually signed measure.
 - (vi) Define Product measure and State Fubini's theorem.