No. of Printed Pages: 3 Roll No.

18DD1907

M.Sc. EXAMINATION, 2020

(Fourth Semester)
(C Scheme) (Main Only)

MATHEMATICS

MAT616C

Mechanics of Solids-II

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit and the compulsory question.

Compulsory Question

1. (a) Define first and second boundary value problem in terms of Airy stress function. 3 (b) Explain Spring and Dashpot. 3 Show that lateral surface of circular beam is stress free. 3 Explain in short of the following: 3 (d) (i) Surface waves (ii) Plane waves. Define Kantorovich method in one and two-dimensional. 3

1

P.T.O.

(4)(OCT-20)M-18DD1907

Unit I

2.	(a)	Explain generalized plane stress.
	(b)	Derive stresses and displacement components in terms of two analytic function
3.	(a)	Construct a biharmonic boundary value problem.
	(b)	Discuss the arbitraryness in selection of two analytic function.
		Unit II
4.	(a)	Define spring and dashpot and derive constitutive equation for Kelvin model
	(b)	Explain strain response under constant stress and vice versa for three parameter solid model.
5.	-	ain deformation of thick-walled tube, when the material of the tube is elastic i tation and Maxwell viscoelastic in distortion.
		Unit III
6.	(a)	Show that maximum shearing stress occurs on the boundary of the cross section.
	(b)	Show that shear stress at the corner and centroid are zero and maximum at the middle point for torsion of beam with triangular cross-section.
7.	(a)	Show that stress vector is normal to the radius vector and also find maximur stress in torsion of circular shaft.
	(b)	Determine the wavelength and velocity of a system of plane waves given b $\phi = a \sin (Ax + By + Cz - Dt)$, where a, A, B, C, D are constant.

Unit IV

- 8. (a) State and prove theorem of minimum complementary energy. 8
 - (b) Explain the deflection of central lines of a beam.
- 9. Explain Galerkin method in one and two-dimensional. Using Galerkin method, solve the problem:

$$\nabla^2 u = -1$$
, in the rectangle $|x| \le a$, $|y| \le b$,

where u = 0 on the boundary.