18DD1908

M. Sc. EXAMINATION, 2020

(Fourth Semester)
(C Scheme)
(Main Only)
MATHEMATICS
MAT618C
Operations Research

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting one question from each Unit. Q. No. 9 is compulsory. All questions carry equal marks.

Unit I

1. Define LPP. Discuss unbounded and infinite solution in Graphical Method. Solve the LPP by Graphical Method :

Min. $Z=20 x_{1}+10 x_{2}$
Subject to
and

$$
\begin{aligned}
x_{1}+2 x_{2} & \leq 40 \\
3 x_{1}+x_{2} & \geq 30 \\
4 x_{1}+3 x_{2} & \geq 60
\end{aligned}
$$

$$
x_{1}, x_{2} \geq 0
$$

2. Use the simplex method to solve the following LPP :

Max. $Z=3 x_{1}+5 x_{2}+4 x_{3}$
Subject to

$$
\begin{aligned}
2 x_{1}+3 x_{2} & \leq 8 \\
2 x_{1}+5 x_{3} & \leq 10 \\
3 x_{1}+2 x_{2}+4 x_{3} & \leq 15 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Unit II

3. Given below is the unit cost array with supplies $a_{i}(i=1,2,3)$ and demand $b_{j}(j=1,2,3,4):$

		Sink				
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	a_{i}
Source	$\mathbf{1}$	8	10	7	6	50
	$\mathbf{2}$	12	9	4	7	40
	9	11	10	8	30	
b_{j}	25	32	40	23	120	
		Or				

Find the optimal solution to the above Hitchock problem.
4. Solve the following minimal assignment problem :

Job

		1	2	3	4	5
	A	8	4	2	6	1
	B	0	9	5	5	4
Problem	C	3	8	9	2	6
	D	4	3	1	0	3
	E	9	5	8	9	5

Unit III

5. Derive EOQ model for deterministic demand when repenishment rate in infinite and shortages are permitted.
6. Define Inventory. What are the advantages and disadvantages of having inventories ?

Unit IV

7. Explain, how Gomory's cutting lane algorithm works. $\mathbf{1 5}$
8. Use the Kuhn-Tucker conditions to solve the follwing N.L.P. problem :

15
Maximize $Z=7 x_{1}^{2}-6 x_{1}+5 x_{2}^{2}$
Subject to
and

$$
\begin{array}{r}
x_{1}+2 x_{2} \leq 10 \\
x_{1}-3 x_{2} \leq 9 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

9. (a) Define Dual Simplex method.
(b) Define Hungarian method.
(c) Explain the following :
(i) Arrival pattern
(ii) Service discipline.
(d) Write the Kuhn-Tucker condition for NLPP.
