18DD1908

M. Sc. EXAMINATION, 2020

(Fourth Semester)

(C Scheme)

(Main Only)

MATHEMATICS

MAT618C

Operations Research

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting *one* question from each Unit. Q. No. 9 is compulsory. All questions carry equal marks.

Unit I

Define LPP. Discuss unbounded and infinite solution in Graphical Method. Solve the LPP by Graphical Method :

Min.
$$Z = 20x_1 + 10x_2$$

Subject to

$$x_1 + 2x_2 \le 40$$

$$3x_1 + x_2 \ge 30$$

$$4x_1 + 3x_2 \ge 60$$

and

$$x_1, x_2 \ge 0.$$

(1-09/24) M-18DD1908

2. Use the simplex method to solve the following LPP:

Max.
$$Z = 3x_1 + 5x_2 + 4x_3$$

Subject to

$$2x_1 + 3x_2 \le 8$$

$$2x_1 + 5x_3 \le 10$$

$$3x_1 + 2x_2 + 4x_3 \le 15$$

$$x_1, x_2, x_3 \ge 0.$$

and

3. Given below is the unit cost array with supplies a_i (i=1, 2, 3) and demand b_j (j=1, 2, 3, 4):

		1	2	3	4	a_i
-	1	8	10	7	6	50
Source	2	12	9	4	7	40
	3	9	11	10	8	30
-	b_j	25	32	40	23	120

Find the optimal solution to the above Hitchock problem.

15

15

4. Solve the following minimal assignment problem:

15

				Job		
		1	2	3	4	5
	A	8	4	2	6	1
	В	0	9	5	5	4
Problem	\mathbf{C}	3	8	9	2	6
	D	4	3	1	0	3
	E	9	5	8	9	5

(1-09/25) M-18DD1908

2

Unit III

- 5. Derive EOQ model for deterministic demand when repenishment rate in infinite and shortages are permitted.15
- 6. Define Inventory. What are the advantages and disadvantages of having inventories?

Unit IV

- 7. Explain, how Gomory's cutting lane algorithm works.
- 8. Use the Kuhn-Tucker conditions to solve the follwing N.L.P. problem: 15

Maximize
$$Z = 7x_1^2 - 6x_1 + 5x_2^2$$

Subject to

$$x_1 + 2x_2 \le 10$$

$$x_1 - 3x_2 \le 9$$

and $x_1, x_2 \ge 0.$

- 9. (a) Define Dual Simplex method.
 - (b) Define Hungarian method.
 - (c) Explain the following:
 - (i) Arrival pattern
 - (ii) Service discipline.
 - (d) Write the Kuhn-Tucker condition for NLPP.