(b) Show that the order of convergence of Newton-Raphson methods in Quadratic.

7

\qquad

DD-343

M. Sc. EXAMINATION, May 2017

(5 Years Integrated)
(Fourth Semester)

(Main \& Re-appear)
MATHEMATICS

MAT-316-H

Probability Distributions and Numerical Methods

Time : 3 Hours] [Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks.
P.T.O.

Unit I

1. (a) Define moment generating functions and prove a random variable X may have no moments although its m.g.f. (moment generating function) exists.

8
(b) If X follows binomial distribution with mean 3 and variance $3 / 2$, find $\mathrm{P}(\mathrm{X} \leq 5)$.
2. (a) Define cumulant and if $\mu^{\prime} r$ is the r th moment about origin prove that

$$
\mu^{\prime} r=\sum_{j=1}^{r}\binom{r-1}{j-1} \mu_{r-j}^{\prime}-k_{j}
$$

where k_{i} is j th comulants.
(b) In sampling a large number of parts manufactured by a machine, the mean number of defective in a sample of 20 is 2. Out of 1000 such samples, how many would be expected to contain at least 3 objective parts.

Unit II

3. (a) Define Poisson distribution. Find out formula for the mean and variance of Poisson distribution.
(b) State central unit theorem and give its applications.
4. (a) 1000 light bulbs with a mean life of 120 days are installed in a new factory, their length of life being normally distributed with standard deviation of 20 days. How many bulbs will be expire in less than 90 days?
(b) If the variance of Poisson distribution is 2 , find the probabilities for $\mathrm{X}=1,2,3$, 4 and 5 from the recurrence relation of the distribution.

Unit III

5. (a) Find a real root of the equation $x^{3}-x-4=0$, by using the bisection method correct to 3 decimal places. $\mathbf{8}$
(2-23) M-DD-343
3
P.T.O.
6. (a) Solve the equations by Cholesky's method :

$$
\begin{aligned}
4 x+2 y+14 z & =14 \\
2 x+17 y-5 z & =-101 \\
14 x-5 y+83 z & =155
\end{aligned}
$$

(b) Solve the equations by Gauss-Seidel method :

8

$$
\begin{aligned}
20 x+y-2 z & =17 \\
2 x-3 y+20 z & =25 \\
3 x+20 y-z & =-18
\end{aligned}
$$

8. (a) Solve the equations by Cholesky's method : 7

$$
\begin{aligned}
4 x+2 y+14 z & =14 \\
2 x+17 y-5 z & =-101 \\
14 x-5 y+83 z & =155
\end{aligned}
$$

(b) Solve the equations by Gauss-Seidel method :

$$
\begin{aligned}
20 x+y-2 z & =17 \\
2 x-3 y+20 z & =25 \\
3 x+20 y-z & =-18
\end{aligned}
$$

