Unit IV

No. of Printed Pages : 4
Roll No. \qquad
7. (a) Show that the series $x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \ldots \ldots$. is absolutely convergent if $|x|<1$ but conditionally convergent for $|x|=1$. 8
(b) State and prove Dirichlet's test. 7
8. (a) Prove that the Cauchy product of the two
series $3+\sum_{n=1}^{\infty} 3^{n}$ and $-2+\sum_{n=1}^{\infty} 2^{n} \quad$ is
absolutely convergent although both series are divergent.
(b) Prove that $\sum_{n=1}^{\infty}\left(1+\frac{x}{n}\right) e^{-x / n}$ is absolutely convergent for all real x.

DD341

M.Sc. (5 Years Integrated) EXAMINATION, May 2019

(Fourth Semester)
(B. Scheme) (Re-appear)
B.Sc. (Hons.) M.Sc. (Mathematics) MATHEMATICS

MAT312H
SEQUENCES AND SERIES

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.
P.T.O.

Unit I

1. (a) Define L.U.B. and G.L.B. of a set. Prove that every non-empty subset of real numbers which is bounded below has a real number as its G.L.B.
(b) Prove that the interior of a Set A is the largest open subset of A.
2. (a) State and prove Bolzano-Weirstrass theorem.
(b) Prove that every set satisfying the Heine Borel property is a compact set.

Unit II

3. (a) Prove that every convergent sequence is bounded but not conversely.
(b) Prove that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ exists and lies between 2 and 3 .
4. (a) If the series $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$. Is the converse true ? Give example. 8
(b) Test the convergence of the series whose nth term is $\frac{1}{\sqrt{n}} \sin \frac{1}{n}$. 7

Unit III

5. (a) Discuss the convergence of the series : $\mathbf{8}$

$$
\frac{1}{2}+\left(\frac{2}{3}\right) x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\ldots \ldots \ldots
$$

(b) Test the convergence of the series : 7

$$
\begin{equation*}
1+\frac{x}{2}+\frac{2!}{3^{2}} x^{2}+\frac{3!}{4^{3}} x^{3}+\frac{4!}{5^{4}} x^{4} \tag{x>0}
\end{equation*}
$$

6. State and prove Cauchy's integral test. 15 (4-18/20) M-DD341 3 P.T.O.
