(b) Let $\left\{f_{n}\right\}$ be a sequence of measurable function which converge to f a.e. on E with $m(\mathrm{E})<\infty$.

Then $f_{n} \xrightarrow{m} f$ on E
Show that the converse of above is not true.

7

Part III

5. (a) Define Reimann integral and Lebesgue integral. Point out the shortcomings of Reimann integration.

8
(b) A bounded function f defined on a measurable set E of finite measure is Lebesgue integrable. Show that f is measurable.
6. (a) Let f and g be bounded measurable functions defined on a set E of finite measure. Then.

8
(i) $\int_{\mathrm{E}} a f=a \int_{\mathrm{E}} f$, for all real numbers a.

HH-341

Dual Degree B.Sc. (Hons.)(Mathematics)/ M.Sc. (Mathematics) EXAMINATION, May 2018

(Eighth Semester)
(Main \& Re-appear)
MAT512H
MEASURE AND INTEGRATION
Time : 3 Hours] [Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Part.
(3-09/19)М-HH-341
P.T.O.

Part I

1. (a) Prove that outer measure of an interval is its length.
(b) Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots \ldots, \mathrm{E}_{n}$ be a finite sequence of disjoint measurable sets. Then for any set A,

$$
m^{*}\left(\mathrm{~A} \cap\left[\bigcup_{i=1}^{n} \mathrm{E}_{i}\right]\right)=\sum_{i=1}^{n} m^{*}\left(\mathrm{~A} \cap \mathrm{E}_{i}\right)
$$

2. (a) Let E_{i} be an infinite increasing sequence of sets (not necessarily measurable) then :

$$
m *\left(\bigcup_{i=1}^{\infty} \mathrm{E}_{i}\right)=\lim _{n \rightarrow \infty} m^{*}\left(\mathrm{E}_{n}\right)
$$

(b) Show that there exists a non-measurable set in the interval $[0,1]$.

7

Part II

3. (a) Define a measurable function. Let f be a function defined on a measurable set E . Then f is measurable if and only if, for any open set G in R , the inverse image $f^{-1}(\mathrm{G})$ is a measurable set.
(b) Prove that a continuous function defined on a measurable set is measurable. Show that the converse may not be true. 7
4. (a) Let E be a measurable set with $m(\mathrm{E})<\infty$, and $\left\{f_{n}\right\}$ a sequence of measurable functions defined on E . Let f be a measurable real valued function such that $f_{n}(x) \rightarrow f(x)$ for each $x \in \mathrm{E}$. Then given $\in<0$ and $\delta>0, \exists$ a measurable set $\mathrm{A} \subset \mathrm{E}$ with $m(\mathrm{~A})<\delta$ and an integer N such that :
$\left|f_{n}(x) \rightarrow f(x)<\in\right|$, for all $x \in \mathrm{E}-\mathrm{A}$ and all $n \geq \mathrm{N}$.
P.T.O.
5. (a) If $f \in \mathrm{R}[a, b]$ and α is a monotonic increasing on $[a, b]$ such that $\alpha^{\prime} \in$ $\mathrm{R}[a, b]$, then $f \in \mathrm{R}(\alpha)$ and :

$$
\int_{a}^{\mu} f d \alpha=\int_{a}^{\mu} f \alpha^{\prime} d x
$$

(b) Solve :

7
(i) $\int_{0}^{2}[x] d x^{2}$
(ii) $\int_{0}^{\pi / 2} x d(\sin x)$.
(ii) $\int_{\mathrm{E}}(f+g)=\int_{\mathrm{E}} f+\int_{\mathrm{E}} g$
(iii) If $f=g$ a.e., then $\int_{\mathrm{E}} f=\int_{\mathrm{E}} g$

Is the conversed true ?
(b) Let f be a non-negative function which is integrable over a set E . Then given $\in>0$, there is a $\delta>0$ such that for every set $\mathrm{A} \subset \mathrm{E}$ with $m(\mathrm{~A})<\delta$, we have :

$$
\int_{\mathrm{A}} f<\epsilon
$$

Part IV

7. (a) A function f is integrable with respect to α on $[a, b]$ if and only if for every $\in>0$ there exists a partition P of $[a, b]$ such that: 8

$$
\mathrm{U}(p, f, \alpha)-\mathrm{L}(p, f, \alpha)<\epsilon
$$

(b) If $f \in \mathrm{R}\left(\alpha_{1}\right)$ and $\int_{\mu} \mathrm{R}\left(\alpha_{2}\right)$, then $f \in \mathrm{R}\left(\alpha_{1}+\alpha_{2}\right)$ and : 7

$$
\int_{a}^{\mu} f d\left(\alpha_{1}+\alpha_{2}\right)=\int_{a}^{\mu} f d \alpha_{1}+\int_{a}^{\mu} f d \alpha_{1}
$$

(3-09/21)M-HH-341
5
P.T.O.

