(b) Let $\{f_n\}$ be a sequence of measurable function which converge to f a.e. on E with $m(E) < \infty$.

Then
$$f_n \xrightarrow{m} f$$
 on E

Show that the converse of above is not true.

Part III

- 5. (a) Define Reimann integral and Lebesgue integral. Point out the shortcomings of Reimann integration.8
 - (b) A bounded function f defined on a measurable set E of finite measure is Lebesgue integrable. Show that f is measurable.
- 6. (a) Let f and g be bounded measurable functions defined on a set E of finite measure. Then.
 - (i) $\int_{E} af = a \int_{E} f$, for all real numbers a.

М-НН-341 4

No. of Printed Pages: 06 Roll No.

HH-341

Dual Degree B.Sc. (Hons.)(Mathematics)/
M.Sc. (Mathematics) EXAMINATION,
May 2018

(Eighth Semester)

(Main & Re-appear)

MAT512H

MEASURE AND INTEGRATION

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Part.

(3-09/19)M-HH-341

P.T.O.

Part I

- 1. (a) Prove that outer measure of an interval is its length.
 - (b) Let E_1 , E_2 ,...., E_n be a finite sequence of disjoint measurable sets. Then for any set A,

$$m * \left(A \cap \left[\bigcup_{i=1}^{n} E_{i} \right] \right) = \sum_{i=1}^{n} m * \left(A \cap E_{i} \right)$$

2. (a) Let E_i be an infinite increasing sequence of sets (not necessarily measurable) then:

$$m * \left(\bigcup_{i=1}^{\infty} \mathbf{E}_i\right) = \lim_{n \to \infty} m * (\mathbf{E}_n)$$

(b) Show that there exists a non-measurable set in the interval [0, 1].

2

M-HH-341

Part II

- 3. (a) Define a measurable function. Let f be a function defined on a measurable set E. Then f is measurable if and only if, for any open set G in R, the inverse image $f^{-1}(G)$ is a measurable set. 8
 - (b) Prove that a continuous function defined on a measurable set is measurable. Show that the converse may not be true.
- **4.** (a) Let E be a measurable set with $m(E) < \infty$, and $\{f_n\}$ a sequence of measurable functions defined on E. Let f be a measurable real valued function such that $f_n(x) \to f(x)$ for each $x \in E$. Then given \in < 0 and δ > 0, \exists a measurable set A \subset E with $m(A) < \delta$ and an integer N such that :

 $|f_n(x) \to f(x) < \in|$, for all $x \in E - A$ and all $n \ge N$.

(3-09/20)M-HH-341

3

P.T.O.

8. (a) If $f \in R[a, b]$ and α is a monotonic increasing on [a, b] such that $\alpha' \in R[a, b]$, then $f \in R(\alpha)$ and :

$$\int_{a}^{\mu} f d\alpha = \int_{a}^{\mu} f \alpha' dx$$

- (b) Solve: 7
 - $(i) \quad \int\limits_0^2 [x] dx^2$
 - (ii) $\int_{0}^{\pi/2} x d(\sin x).$

- (ii) $\int_{E} (f+g) = \int_{E} f + \int_{E} g$
- (iii) If f = g a.e., then $\int_{E} f = \int_{E} g$

Is the conversed true?

(b) Let f be a non-negative function which is integrable over a set E. Then given $\epsilon > 0$, there is a $\delta > 0$ such that for every set $A \subset E$ with $m(A) < \delta$, we have:

$$\int_{\mathbf{A}} f < \in$$

Part IV

7. (a) A function f is integrable with respect to α on [a, b] if and only if for every $\epsilon > 0$ there exists a partition P of [a, b] such that :

$$U(p, f, \alpha) - L(p, f, \alpha) \le \epsilon$$

(b) If $f \in R(\alpha_1)$ and $\int_{\mu} R(\alpha_2)$, then $f \in R(\alpha_1 + \alpha_2)$ and :

$$\int_{a}^{\mu} f d(\alpha_1 + \alpha_2) = \int_{a}^{\mu} f d\alpha_1 + \int_{a}^{\mu} f d\alpha_1$$

(3-09/21)M-HH-341

5

P.T.O.

M-HH-341 6 100