6. (a) State Gauss Lemma and prove that :

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

(b) Define Jacobi symbol evaluate the following :
(i) $\left(\frac{-35}{97}\right)$
(ii) $\left(\frac{51}{71}\right)$
(iii) $\left(\frac{10}{127}\right)$

Unit IV

7. (a) Define monoalphabetic and polyalphabetic cipher systems by taking suitable examples and explain the encryption and decryption method of Hill Cipher.
(b) Encipher the message HAVE A NICE TRIP using a Vigenere cipher with the keyword MATH.

No. of Printed Pages : 5

II344

M.Sc. Mathematics (5 Year Integrated) EXAMINATION, May 2019

(Ninth Semester)
(B. Scheme) (Re-appear)
B.Sc. (Hons.) M.Sc. (Mathematics)

MAT617H
ANALYTICAL NUMBER THEORY AND CRYPTOGRAPHY

Time : 3 Hours]
[Maximum Marks : 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit.
(4-13/6) M-II344
P.T.O.

Unit I

1. (a) Prove that primes one infinite in number.
(b) Prove that $\operatorname{gcd}\left(\mathrm{F}_{m}, \mathrm{~F}_{n}\right)=1$, where $m>n$ ≥ 0 and F_{m} and F_{n} are Fermat numbers.
(c) If $\frac{a}{b}$ and $\frac{a^{\prime}}{b^{\prime}}$ are consecutive fractions in the 4th row, then prove that $a^{\prime} b-a b^{\prime}=1$.
2. (a) Let θ be a rational multiple of π. Then prove that $\cos \theta, \sin \theta, \tan \theta$ are irrational numbers apart from the cases where $\tan \theta$ is undefined and - ve exceptions $\cos \theta=0, \pm \frac{1}{2}, \pm 1 ; \sin \theta=0, \pm \frac{1}{2}, \pm 1 ;$ $\tan \theta=0, \pm 1$.10
(b) State Hurwitz theorem and prove that $\sqrt{5}$ appearing in Hurwitz theorem is the best possible.

5
M-II344 2

Unit II

3. (a) Prove that energy prime of the form $4 k+1$ can be written as a sum of two squares.
(b) Find all solutions in positive integers of $15 x+7 y=111$.
4. (a) Define $\mathrm{G}(k)$ and prove that $\mathrm{G}\left(2^{\theta}\right) \geq 2^{\theta+2}$.
(b) Find all integers that give the remainders $1,2,3$ when divided by $3,4,5$ respectively.

Unit III

5. (a) If p is a prime, then the group U_{p} has $\phi(d)$ elements of order d for each d dividing $p-1$ and hence prove that U_{p} is cyclic.
(b) If $e \geq 3$, then prove that:

$$
\mathrm{U}_{2} e=\left\{ \pm 3^{i} \mid 0 \leq i<2^{e-2}\right\}
$$

(4-13/7) M-II344
3
p.t.O.
8. (a) Construct a multiplex sequence in a binary field F_{2} using the sequences s_{0}, s_{1}, s_{2},
\qquad . and t_{0}, t_{1}, t_{2}, in F_{2} with $s_{n+3},=s_{n+1}+s_{n}$ for $n=0,1,2$, $t_{n+4},=t_{n+3}+t_{n}$ for $n=0,1,2$, \qquad and initial state vectors $(1,0,0)$ and $(1,0,0,0)$ respectively.
(b) The message NOT NOW is to be sent to a user of the Elgamal system who has public key $(37,2,18)$ and private key $k=17$. If the integer j used to construct the cipher text is changed over successive four digit blocks from $j=13$ to $j=28$ to $j=11$. What is the encrypted message produced ?
8. (a) Construct a multiplex sequence in a binary field F_{2} using the sequences s_{0}, s_{1}, s_{2}, $\ldots \ldots \ldots \ldots$ and $t_{0}, t_{1}, t_{2}, \ldots \ldots \ldots \ldots$. in F_{2} with $s_{n+3},=s_{n+1}+s_{n}$ for $n=0,1,2, \ldots \ldots \ldots$. $t_{n+4},=t_{n+3}+t_{n}$ for $n=0,1,2$, \qquad and initial state vectors $(1,0,0)$ and $(1,0,0,0)$ respectively.
(b) The message NOT NOW is to be sent to a user of the Elgamal system who has public key $(37,2,18)$ and private key $k=17$. If the integer j used to construct the cipher text is changed over successive four digit blocks from $j=13$ to $j=28$ to $j=11$. What is the encrypted message produced ?

