
6. Using stiffness matrix method, analyses the frame shown in fig. Take EI constant throughout:15

Unit IV

- Write down the merits and demerits of transformation matrix approach of structural analysis.
- **8.** Develop the displacement transformation matrix for the structures shown in Fig. and hence

4

No. of Printed Pages: 05 Roll No.

AA561

M. Tech. EXAMINATION, May 2019

(First Semester)

(B. Scheme) (Re-appear)

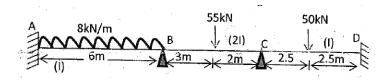
CE(SE)

CES501

ADVANCED STRUCTURAL ANALYSIS

Time: 3 Hours [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.


Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. Assume any data if missing in the question paper.

(2-21/11) M-AA561

P.T.O.

Unit I

A continuous beam ABCD consists of three spans and is loaded as shown in fig. Ends A and D are fixed. Using the slope deflection method and determine the bending moment at the supports and plot the bending moment diagram.

- (a) List the properties of stiffness matrix.
 Also write down the difficulties with direct stiffness method of formulation.
 - (b) Write down the relationship between stiffness matrix and flexibility matrix.15

Unit II

3. A three span continuous beam ABCD rests on simple support at A and D and on elastic supports at B and C. AB = BC = CD = L.

2

M-AA561

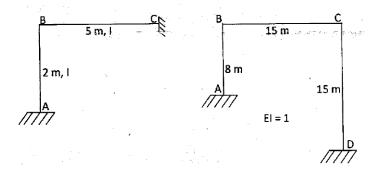
A vertical downward load P acts at B. Calculate the supports reactions at B and C if the axial flexibility of the elastic supports is L³/6EI, where EI is the flexural rigidity of the beam.

15

4. A cantilever beam AB of length 5 m is fixed at A and supported by elastic prob at B. The beam carries a uniformly distributed load of 4 kN/m. The stiffness of the prob is 1.8 kN/mm. Analyse the beam by displacement method. Hence determine the fixed end moment at A. Take EI = 32000 kN.m².
15

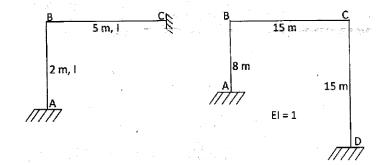
Unit III

5. For simply supported beam of uniform cross-section as shown, develop the flexibility matrix with reference to co-ordinate shown in fig. :15


(2-21/12) M-AA561

3

P.T.O.


derive the stiffness matrix. Assume EI constant for all the members.

15

derive the stiffness matrix. Assume EI constant for all the members.

15

M-AA561 5 40 (2-21/13) M-AA561 5 40