18AA1002

M. Tech. EXAMINATION, 2020

(First Semester)
(C Scheme)
(Re-appear Only)
CSE
MTCSE503C
ADVANCED DATA STRUCTURES

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting one question from each Unit. Q. No. 9 is compulsory. All questions carry equal marks.

Unit I

1. (a) What is an extensible Hashing ? State with and example. $71 / 2$
(b) What is an Double Hashing? State with and example. $71 / 2$
2. (a) Describe various collision resolution techniques also mention their applicability.
(b) Write ADT for simple Linked List.

Unit II

3. (a) What is a Skip List ? Compute complexity for insertion operation in it using randomized algorithm.
(b) Differentiate B tree and Binary search tree. 7½
4. (a) What are deterministic skip lists ? Explain in comparison to simple skip list.
(b) State and explain any one method for Computational Geometry.

Unit III

5. (a) Consider an empty Red Black Tree and Insert $12,56,5,78,34,23,45,22,66$ into that. Show all intermediate states. $71 / 2$
(b) Explain deletion algorithm for BST. 71⁄2
6. (a) Explain the process of splaying and also estimate the cost of each splaying operation. 71/2
(b) Compare 2-3 Tree with BST. 7½

Unit IV

7. Write short notes on the following :
(a) K-D Tree
(b) Search operation in Priority Tree.
8. (a) Write an Algorithm for two dimensional Range Search. 7½
(b) What is Divide and Conquer Strategy? Mathematically compute worst case and best case complexity of search operation in binary search tree. 71⁄2

(Compulsory Question)

9. (a) What are Skewed Tree ? Name some of the data structures where skewedness is reduced.
(b) What are limitations of Hashing ?
(c) What is Black Height of a Red Black Tree? What is its maximum and minimum value in comparison of height of tree ?
(d) Write the limitations of Binary Search Tree.
(e) Write any three properties of Quad-Tree.
