No. of Printed Pages : 03	Roll No
No. of Frinted Pages: 05	K0II N0

18AA1151

M. Tech. EXAMINATION, 2020

(First Semester)

(C Scheme)

(Re-appear Only)

ECE

MTEC501C

Digital Signal and Image Processing

Time: 3 Hours [Maximum Marks: 75]

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all. Q. No. **9** is compulsory and contains *five* subparts each of 2 marks. Attempt any other *four* questions slecting at least *one* question from each of four Units

Unit I

- 1. (a) Explain the convolution for discrete Linear Time Invariant System in brief. 5
 - (b) State the computational requirements of Fast Fourier Transform.
 - (c) Draw the neat and clean flow graph for 8 points Decimation in Frequency Fast Fourier Transform.5
- (a) Describe the various steps for designing of IIR filters using bilinear transformation technique with necessary mathematical analysis.

(1-04/42) M-18AA1151

5

- (b) Determine digital filter system function H(z) using impulse invariance technique for analogy system function $H(s) = \frac{1}{(s+1)(s+2)}$ assuming T = 1s.
- (c) Discuss the requirements for converting a stable analog filter into stable digital filter.

Unit II

- 3. (a) Draw neat and clean diagram for direct form I and II realization for IIR systems with necessary mathematical analysis.
 - (b) Develop a parallel realization structure of the system characterized by the

transfer function H(z) =
$$\frac{(1+z^{-1})}{\left(1+\frac{1}{2}z^{-1}\right)\left(1+\frac{1}{2}z^{-1}+\frac{1}{4}z^{-2}\right)}.$$

- (c) Obtain a cascade realization structure of the system characterized by the transfer function $H(z) = \frac{2(z+1)}{z(z-1)(z+0.5)(z+0.4)}$.
- 4. (a) Draw neat and clean diagram for direct form and cascade realization structure of FIR systems with necessary mathematical analysis.
 - (b) Describe the finite word length effect on design of digital filter. 5
 - (c) Develop the direct form and cascade form of FIR filter described by: 5

$$H(z) = \left(1 - \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2}\right) \left(1 - \frac{1}{8}z^{-1} + \frac{1}{2}z^{-2}\right).$$

Unit III

- 5. (a) Write a brief note on various components of digital image processing system.
 - (b) Explain the concept of sampling and quantization in image processing. 5

(c)		Define the following terms:	
		(i) Binary Image	
		(ii) Resolution	
		(iii) Pixel	
		(iv) Color Image	
		(v) Grey-Scale Image.	
6.	(a)	Define Neighbours of a pixel.	2
	(b)	Explain image negative transformation.	2
	(c)	Explain log, gamma and piecewise linear transformation function in image ale	ong
		with application of each transformation.	6
	(d)	With an example, explain the concept of histogram equalization.	5
		Unit IV	
7.	(a)	Explain image smoothing using ideal low pass filters and Butterworth low p filters.	ass 5
	(b)	State 2D sampling theorem and explain about aliasing in images.	5
	(c)	Define 2D DFT. Describe any five properties of two dimensional DFT.	5
8.	(a)	Describe any two sharpening frequency domain filters.	5
	(b)	Explain any two low pass frequency domain filters.	5
	(c)	Discuss, how the various filter masks are generated to sharpen images in spa	tial
		filters ?	5
9.	(a)	Distinguish between IIR and FIR filters.	3
	(b)	List the various building blocks for realization of digital filter.	3
	(c)	Discuss the various operations on discrete time signal with example.	3
	(d)	Define an image. List out and explain the various areas of applications of image.	age
		processing.	3
	(e)	Define spatial convolution and explain its use in image processing.	3