Lines	Impedance	Bus code	Lines charging admittance
1-2	0.06+j0.018	1	0.05j
1-3	$0.02+\mathrm{j} 0.06$	2	0.06j
2-3	0.06+j0.012	3	0.05j
Bus code	e voltage	MW	MVAR
1 (Slack)	$1.06+\mathrm{j} 0.0$	P_{1}	Q_{1}
2 (PV)	0.04 ¢	0.2	Q2 (injected)
3 (PQ)	1-0+j0.0	-0.6	-0.25 (injected)

Unit IV

7. Describe the different types of 3- ϕ unsymmetrical faults. A $50 \mathrm{MVA}, 11 \mathrm{KV} 3-\phi$ alternator was subjected to different types of faults. The fault currents are as : 3- ϕ phase fault $=2000$ A, L-L fault $=2600 \mathrm{~A}, \mathrm{~L}-\mathrm{G}$ fault $=4200$ A. The generator neutral is solidally grounded. Find the values of three sequence reactances of the alternator. Ignore resistances.

15
P.T.O.

Unit I

1. (a) Evaluate the generalized circuit constants for short transmission line.

10
(b) Explain "Ferranti effect" with a phasor diagram.

5
2. Determine the sending end voltage, current, power and power factor a 160 km section of 3- ϕ line delivering 55 MVA at 133 KV and p.f. 0.8 lagging. Also find the efficiency and regulation of the line. Resistance per line is 0.16Ω per km , spacing $3.7 \mathrm{~m}, 6.5 \mathrm{~m}, 7.4 \mathrm{~m}$ transposed. Evaluate ABCD parameters also. Diameter $=1.96 \mathrm{~cm}$.

15

Unit II

3. (a) A primitive Y matrix is:

7
1
1
2
3
4
5
5 $\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ -0.083 & -0.417 & 0 & -1.042 & 0 \\ 0 & 0.083 & 0 & 0.208 & 0 \\ -1.042 & 0.208 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

Form $\mathrm{Y}_{\text {Bus }}$.
M-AA-43
2
(b) Develop an expression for $Y_{\text {Loop }}$ (Loop admittance matrix) using basic loop incidence matrice B formulation.
4. Develop equations for self and mutual elements when a link is added between two existing buses in an old network.

Unit III

5. Explain clearly with a flow chart the computational procedure for load flow solution using newton-raphson method when the system contains all type of buses. 15
6. The load flow data for a three bus system is given below. The voltage magnitude at bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generator at bus 2 are 0.3 and 0.0 p.u. respectively. Taking bus 1 as the slack bus, determine the set of load flow equations at the end of first iteration starting with a flat voltage profile for all buses except slack bus using Gauss-Seidel method. Impedance for sample system :
P.T.O.
7. For the network shown in fig. (1), determine the bus voltage after the fault, line flow and fault level for 1-phase to ground fault at bus 5 .

15

Fig. (1)

Element Bus Code				Self Impe-
No.	$(\mathbf{p - q})$		$\mathbf{Z}_{\mathbf{M}}^{\mathbf{0 , 1 , 2}}$	
dances				

M-AA-43
60
8. For the network shown in fig. (1), determine the bus voltage after the fault, line flow and fault level for 1-phase to ground fault at bus 5 .

Fig. (1)

Element Bus Code			Self Impe-	$\mathbf{Z}_{\mathbf{M}}^{\mathbf{0 , 1 , 2}}$
No.	$\mathbf{(p - q)}$		dances	
1	$1-2$	0.05	0.20	0.20
2	$2-3$	0.05	0.15	0.15
3	$3-4$	0.06	0.25	0.25
4	$4-5$	1.02	0.50	0.50
5	$3-5$	1.50	0.80	0.80
6	$1-5$	2.50	1.50	1.50

(3-02/7) M-AA-43
5
60

