]	Lines	Impedance	Bu	s Lines	s charging
			cod	e ad	mittance
	1-2	0.06+j0.018	1		0.05j
	1-3	0.02+j0.06	2		0.06j
	2-3	0.06+j0.012	3		0.05j
В	us code	e voltage	MW	MVAR	
1	(Slack)	1.06+j0.0	P_1	Q_1	
2	(PV)	$0.04 \underline{\delta}$	0.2	Q2	(injected)
3	(PQ)	1-0+j0.0	-0.6	-0.25	(injected)

Unit IV

7. Describe the different types of 3-φ unsymmetrical faults. A 50 MVA, 11 KV 3-φ alternator was subjected to different types of faults. The fault currents are as: 3-φ phase fault = 2000 A, L-L fault = 2600 A, L-G fault = 4200 A. The generator neutral is solidally grounded. Find the values of three sequence reactances of the alternator. Ignore resistances.

M-AA-43 4

No. of Printed Pages: 05 Roll No.

AA-43

M. Tech. EXAMINATION, May 2017

(First Semester)

(B. Scheme) (Re-appear Only)

EE(PS)

MPS-505-B

ADVANCED POWER SYSTEM ANALYSIS

Time: 3 Hours]

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

(3-02/5) M-AA-43

P.T.O.

Unit I

- 1. (a) Evaluate the generalized circuit constants for short transmission line. 10
 - (b) Explain "Ferranti effect" with a phasor diagram. 5
- 2. Determine the sending end voltage, current, power and power factor a 160 km section of 3-φ line delivering 55 MVA at 133 KV and p.f. 0.8 lagging. Also find the efficiency and regulation of the line. Resistance per line is 0.16 Ω per km, spacing 3.7 m, 6.5 m, 7.4 m transposed. Evaluate ABCD parameters also. Diameter = 1.96 cm.

Unit II

3. (a) A primitive Y matrix is:

Form Y_{Bus}.

M-AA-43 2

- (b) Develop an expression for Y_{Loop} (Loop admittance matrix) using basic loop incidence matrice B formulation. 8
- 4. Develop equations for self and mutual elements when a link is added between two existing buses in an old network.

 15

Unit III

- Explain clearly with a flow chart the computational procedure for load flow solution using newton-raphson method when the system contains all type of buses.
- 6. The load flow data for a three bus system is given below. The voltage magnitude at bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive power limits of the generator at bus 2 are 0.3 and 0.0 p.u. respectively. Taking bus 1 as the slack bus, determine the set of load flow equations at the end of first iteration starting with a flat voltage profile for all buses except slack bus using Gauss-Seidel method. Impedance for sample system:

(3-02/6) M-AA-43 P.T.O.

8. For the network shown in fig. (1), determine the bus voltage after the fault, line flow and fault level for 1-phase to ground fault at bus 5.

15

8. For the network shown in fig. (1), determine the bus voltage after the fault, line flow and fault level for 1-phase to ground fault at bus 5.

15

T	T ⁽¹⁾	6	5
1		5	4
	2	3 3 - Fig. (1)	4

Element Bus Code			Self Impe-	$Z_{\rm M}^{0,1,2}$
No.	(p-q)		dances	
1	1-2	0.05	0.20	0.20
2	2-3	0.05	0.15	0.15
3	3-4	0.06	0.25	0.25
4	4-5	1.02	0.50	0.50
5	3-5	1.50	0.80	0.80
6	1-5	2.50	1.50	1.50

5

M-AA-43

Element Bus Code			Self Impe-	$Z_{M}^{0,1,2}$
No.	(p-q)		dances	
1	1-2	0.05	0.20	0.20
2	2-3	0.05	0.15	0.15
3	3-4	0.06	0.25	0.25
4	4-5	1.02	0.50	0.50
5	3-5	1.50	0.80	0.80
6	1-5	2.50	1.50	1.50

(3-02/7) M-AA-43 5 60

60