(b) Using Golden Section search method find the minimum point with the three decimal places of accuracy taking initial point $x^{(0)}=0 \quad$ and an initial $\Delta=1$; $f(x)=e^{x}-400 x^{3}+10$.
8. (a) What do you understand by the nontraditional optimization algorithms ? Discuss any one of them in detail giving suitable example.

No. of Printed Pages : 0
Roll No.

AA82

M. Tech. EXAMINATION, 2020
(First Semester)
(B. Scheme) (Re-appear)
(ME)
MEM503B
NUMERICAL AND OPTIMIZATION METHODS

Time : $2 ½$ Hours $]$
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Four questions in all. All questions carry equal marks.

1. (a) Describe the various types of errors encountered in a numerical process.
P.T.O.
(b) What do you mean by numerical instability ? Explain with suitable examples.
2. (a) List different standard forms of the polynomials that could be used for constructing interpolation functions.
(b) Fit the power equation $y=a x^{b}$ to the following data :

$$
\begin{array}{cccccccc}
x & : & 7.5 & 10 & 12.5 & 15 & 17.5 & 20 \\
y & : & 2.4 & 1.6 & 1.2 & 0.8 & 0.6 & 0.6
\end{array}
$$

3. Estimate approximate first derivative of $\ln \left(1+x^{2}\right)$ at $x=1$ with $h=0.01$, using :
(i) first-order forward difference formula
(ii) second order central difference formula.
4. (a) Explain the principle of Newton-Raphson formula with the help of graphical illustration.
(b) Solve the following sets of equations by Gauss-Siedel method :
$2 x+y+3 z=7 ; 4 x+2 y+3 z=4 ;$ $x-y+z=0$.
5. (a) State the formula of Euler's method. Illustrate its concept graphically.
(b) Use 4th order Runge-Kutta method to estimate $y(0.5)$ of the following differential with $h=0.25$:

$$
\frac{d y}{d x}=\sin x+y ; y(0)=2
$$

6. Given the boundary-value problem :

$$
\frac{d^{2} y}{d x^{2}}=3 x+4 y ; y(0)=1 ; y(1)=1
$$

Obtain its solution in the range $0 \leq x \leq 1$ with $\Delta x=0.25$ using a suitable numerical methods.
7. (a) State the fundamental rules for Regionelimination methods for Single-variable optimization.

