bottom sections are 40 and 60 m , respectively. Tower is also subjected to $1.6 \mathrm{kN} / \mathrm{m}^{2}$. Analyse for membrane forces developed in shell due to self weight and wind loads. 15

Section D

7. A lathe machine weight 250 kN , with base area $2 \times 5.0 \mathrm{~m}$, speed 1000 rpm , mass inertia $8000 \mathrm{kgm}^{4}$, and vertical excitation force 75 kN . The soil has safe bearing capacity $175 \mathrm{kN} / \mathrm{m}^{2}$, coefficient of elastic uniform compression is $60 \mathrm{MN} / \mathrm{m}^{3}$. Design the foundation using M 20 grade concrete and Fe 415 grade of steel if allowable amplitude is limited to 0.20 mm .
8. A power hammer has the following features Weight of hammer $=25 \mathrm{kN}$, weight of anvil $=50 \mathrm{kN}$, weight of frame 40 kN , anvil base area $=1.25 \times 2.5 \mathrm{~m}$, drop height of tup $=1.5 \mathrm{~m}$

BB-564

M. Tech. EXAMINATION, Dec. 2018
(Second Semester)
(B. Scheme) (Re-appear Only)

CE(SE)
CES510
ADVANCED CONCRETE STRUCTURES

Time : 3 Hours]
[Maximum Marks : 75
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions only which carry equal marks. However, a student should attempt at least one question from every Section. Use of Indian standards is allowed. Any data if missing can be suitably assumed. Use of scientific calculator is allowed.
(3-31/3) M-BB-564
P.T.O.

Section A

1. A water tank with 2500 kl capacity has size $20 \mathrm{~m} \times 25 \mathrm{~m} \times 5.5 \mathrm{~m}$. The tank is just above the ground level. Using IS : 33702009 design the vertical wall of tank. M 30 grade of concrete and Fe 250 grade of steel are to be used.

15
2. An intz type of water tank has been constructured with the following data : Height of water tank 4.5 m , free board $=$ 0.60 m , Radius of top dome $=4.55 \mathrm{~m}$, radius of bottom dome $=3.4 \mathrm{~m}$, Rise of top dome $=$ 1.25 m , Rise of bottom dome $=1.425 \mathrm{~m}$. Use M 30 grade of concrete and Fe 415 grade of steel to design the cylindrical walls of water tank by limit state method as per IS : 3370 2009.

Section B

3. Design a circular bunker to store 30 tonnes of coal. Coal weighs $10 \mathrm{kN} / \mathrm{m}^{3}$ with angle of repose 30°. Use limit state method to design with M 25 grade of concrete and Fe 500 grade of steel.

15
coefficient of restitution $=0.6$. The soil has safe bearing capacity $150 \mathrm{kN} / \mathrm{m}^{2}$, coefficient of elastic uniform compression is $50 \mathrm{MN} / \mathrm{m}^{3}$. Design the foundation using M 25 grade concrete and Fe 415 grade of steel with 300 m thick wooden cushion to the anvil, assume Young's modulus of timer as $1600 \mathrm{MN} / \mathrm{m}^{3}$.

15
coefficient of restitution $=0.6$. The soil has safe bearing capacity $150 \mathrm{kN} / \mathrm{m}^{2}$, coefficient of elastic uniform compression is $50 \mathrm{MN} / \mathrm{m}^{3}$. Design the foundation using M 25 grade concrete and Fe 415 grade of steel with 300 m thick wooden cushion to the anvil, assume Young's modulus of timer as $1600 \mathrm{MN} / \mathrm{m}^{3}$.

