- (b) What do you understand by various statistical properties of data? How does these helping estimating the reliability study of a system. - **4.** (a) Explain in detrail reliability growth testing with the help of neat labelled sketches and suitable mathematical derivations. **8** - (b) A prototype model of an engineering system was initially tested for a 300 hr. period during which 5 failures occurred. The specified mean time between failures of the system is 800 hrs. Assume that the value of the Duane model slope parameter β is 0.4. Compute the value of additional system test hours. ### **Unit III** 5. (a) Explain in detail parameter estimation of covariance model. Cite an example of the complete process. 4 M-CC-62 No. of Printed Pages: 05 Roll No. # **CC-62** ## M. Tech. EXAMINATION, May 2017 (Third Semester) (Re-appear Only) #### ECE/INDUSTRY INTEGRATED MTEC-603-B Reliability Engineering Time: 3 Hours [Maximum Marks: 75] Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination. **Note**: Attempt *Five* questions in all, selecting at least *one* question from each Unit. (2-14) M-CC-62 P.T.O. #### Unit I - (a) What do you understand by probability distribution functions? Enumerate various types of continuous and discrete distribution functions citing their specific applications and usage. - (b) The failure data for ten electronic components is as given in Table 1. Compute and plot failure density, failure rate, reliability and unreliability functions. Table 1 Failure No. Operating time hrs. | 1 | 8 | |----|-----| | 2 | 20 | | 3 | 34 | | 4 | 46 | | 5 | 63 | | 6 | 86 | | 7 | 111 | | 8 | 141 | | 9 | 186 | | 10 | 266 | M-CC-62 2 with the help of a neat labelled sketch. Also derive the maintainability function. 9 (b) Two transmitters are installed at a particular station with each capable of meeting the full requirements. One transmitter has a mean constant failure rate of 9 faults per 10⁴ hrs and occurrence of each fault renders it out of service for a fixed time of 50 hours. The other transmitter has a corresponding failure rate of 15 faults per 10⁴ hours and an out of service time per fault of 20 hours. What is the mean availability of the system? #### **Unit II** 3. (a) What are different empirical methods for data analysis for reliability estimation?Explain any *one* of them citing suitable examples. (2-14) M-CC-62 3 **P.T.O.** | | (b) What is the significance of various distributions in failure and repair analysis? Explain the effect of choice of distribution in such studies. 8 | (b) What is the significance of various distributions in failure and repair analysis? Explain the effect of choice of distribution in such studies. | |----|---|---| | 6. | (a) What is Weibull distribution? Explain Mann's goodness of fit test for it giving suitable mathematics. (b) Explain in detail test for power law process model. Also give its applications with the help of a suitable examples. | 6. (a) What is Weibull distribution? Explain Mann's goodness of fit test for it giving suitable mathematics. 8 (b) Explain in detail test for power law process model. Also give its applications with the help of a suitable examples. | | | Unit IV | Unit IV | | 7. | How does repairability in a system affects its reliability? Describe various reliability allocation methods under such scenarios with the help of suitable examples and mathematics. 15 | 7. How does repairability in a system affects its reliability? Describe various reliability allocation methods under such scenarios with the help of suitable examples and mathematics. 15 | | 8. | Write short notes on any two of the following: (a) Burn in testing (b) Software reliability (c) Preventive main furnace analysis. 15 | Write short notes on any two of the following:(a) Burn in testing(b) Software reliability(c) Preventive main furnace analysis. 15 | | М- | CC-62 5 60 | (2-14) M-CC-62 5 60 |