- 4. (a) Enlist all combustion modeling techniques you know. Discuss the zero dimensional model for combustion analysis is CI engines.
 - (b) Explain SOOT and its formation phenomena; also explain modeling of NO_x emissions from SI engines?

Unit III

- 5. (a) Develop a simplified model for CI engine simulation.
 - (b) Derive the formulation $Qp = \sum_{i=1}^{5} N_i \Delta \overline{h}_i$. Where N_i designate to number of moles and $\Delta \overline{h}_i = \overline{h}_i(T) - \overline{h}_i(298)$. State the assumptions clearly.
- **6.** (a) What is progressive combustion? Discuss in detail.
 - (b) What are different simulation techniques used for combustion modeling and pollutant formation modeling from IC engines? Discuss.

M-CC-88 4

No. of Printed Pages: 05 Roll No.

CC-88

M. Tech. EXAMINATION, May 2017

(Third Semester)

(Re-appear Only)

(ME)

MET-623-B

IC ENGINES PROCESS MODELING

Time: 3 Hours]

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks. Assume suitable values for missing parameters (if any).

(3-16/5) M-CC-88

P.T.O.

Unit I

- developments of petrol engine. Compare the 4-stroke petrol cycle at full throttle and actual 4-stroke petrol cycle at part throttle at P-V coordinates.
 - (b) A one liter cubic capacity, four stroke, four cylinder SI engine has brake thermal efficiency of 30% and indicated power is 40 kW at full load. At half load, it has a mechanical efficiency of 65%. Assuming constant mechanical losses, compute:
 - (i) Frictional power
 - (ii) Mechanical efficiency
 - (iii) Indicated thermal efficiency. If the volume decreases by eight fold during compression stroke
 - (iv) Calculate clearance volume. 8
- 2. (a) What is irreversibility? Show the availability flows of diesel engine processes on a P-V diagram.

2

M-CC-88

(b) A gas engine operating on the ideal Otto cycle has a compression ratio of 6:1. The pressure and temperature at the commencement of compression are 1 bar and 27°C. Heat added during constant volume combustion process is 1170 kJ/kg. Assume compression and expansion is reversible and adiabatic. Make first law and second law analysis (take $c_v = 0.717$ kJ/kg-K and $\gamma = 1.4$). 10

Unit II

- 3. (a) What is CO₂ dissociation in combustion?How the adiabatic flame temperature is affected by it?5
 - (b) Explain the various stages of combustion in CI engines. Explain the phenomenon of knock in CI engines and compare it with SI engine knock.

(3-16/6) M-CC-88 3 P.T.O.

Unit IV

7.	Describe	FIRE	Solver	along	with	its	modules
----	----------	------	--------	-------	------	-----	---------

15

8. How does CFD software ANSYS work?Discuss the design process for ANSYS Software.

Unit IV

7. Describe FIRE Solver along with its modules.

15

8. How does CFD software ANSYS work?Discuss the design process for ANSYS Software.

M-CC-88 5 60

(3-16/7) M-CC-88

5

60