Unit IV

7. (a) How inertia tensor is different from translational inertia ?
(b) What do you understand by principal moment of interia ? How principal axes are determined ? 15
8. Explain Newtonian approach to solve dynamics of a rigid body. 15

CC-83

M. Tech. EXAMINATION, Dec. 2018
(Third Semester)
(B. Scheme) (Main \& Re-appear)
(ME)
MED601B
MECHANISM AND MANIPULATOR DESIGN

Time : 3 Hours]
[Maximum Marks : 75
$\overline{\text { Before answering the question-paper candidates }}$ should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Section. All questions carry equal marks.
P.T.O.

Unit I

1. Differentiate between number and dimensional synthesis ? Prove thate minimum number of binary links in a constrained is four. $\mathbf{1 5}$
2. In the mechanism shown below, $\omega_{2}=10 \mathrm{rad} / \mathrm{s}(\mathrm{CW})$, Determine ω_{6} and α_{6}. Given $\mathrm{O}_{2} \mathrm{~A}=7.5 \mathrm{~cm} ; \mathrm{AB}=5 \mathrm{~cm} ; \mathrm{BC}=7.5 \mathrm{~cm}$; $\mathrm{O}_{5} \mathrm{C}=6.25 \mathrm{~cm} ; \mathrm{CD}=10 \mathrm{~cm} ; \mathrm{BD}=5 \mathrm{~cm}$; $\mathrm{O}_{6} \mathrm{D}=5 \mathrm{~cm}, ; \angle \mathrm{O}_{2} \mathrm{AB}=110^{\circ}, \angle \mathrm{ABC}=115^{\circ} ;$ $\angle \mathrm{O}_{6} \mathrm{DB}=117^{\circ}$.

15

M-CC-83 2

Unit II

3. Explain motion, path and function generation in dimensional synthesis.
4. Determine the lengths of the links of a fourbar linkage to generate $y=\log _{10} x$ in the interval $1 \leq x \leq 10$. The length of the smallest link is 5 cm . Use three accuracy points with Chebyshev's spacing.

Unit III

5. Explain different types of electric actuators used for a robotics manipulator with their advantages and diadvantages. 15
6. Differentiate in forward and inverse kinematics. Also explain DenavitHertnberg. notation kused to solve kinematics of a manipulator.
P.T.O.
