## Unit IV

7. (a) Discuss the general considerations for RF Synthesizers.
(b) Explain with neat block diagram divide by two circuits.
$7.5 \times 2=15$
8. (a) Compare the Linear and Non-linear power amplifiers.
(b) Discuss the basic linearization techniques for power amplifiers. $\quad \mathbf{7 . 5} \times \mathbf{2 = 1 5}$

Roll No. $\qquad$

CC-766
M. Tech. EXAMINATION, May 2017
(Third Semester)
(Re-appear Only)
ECE(VLSI)
MTVLSI-661
CMOS RF IC DESIGN

Time : 3 Hours]
[Maximum Marks : 75
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt Five questions in all, selecting at least one question from each Unit. All questions carry equal marks. Use of calculator is allowed.
P.T.O.

## Unit I

1. (a) What causes inter-symbol interference in communication channels ? Explain its effect and methods for reducing.
(b) Two carriers of 200 MHz and 210 MHz frequency are fed to a non-amplifier. Show the output of the amplifier in 150 MHz to 300 MHz frequency range indicating the frequencies of the components. $\quad \mathbf{7 . 5} \times \mathbf{2 = 1 5}$
2. (a) With neat block diagram, explain the implementation of the GMSK.
(b) A 10 kHz sinusoid signal frequency modulates a carrier of 500 MHz with a deviation of 200 kHz . Calculate the bandwidth required for transmitting this FM signals.
$7.5 \times 2=15$

## Unit II

3. (a) Discuss the general considerations for RF Transceivers.
(b) Compare the performance of Directconversion Transmitters with two-step transmitters.
$7.5 \times 2=15$
4. (a) Discuss the high-frequency behaviour of MOS transistors and ac small-signal modeling.
(b) Discuss the behaviour of integrated parasitic elements at high frequencies.
$7.5 \times 2=15$

## Unit III

5. (a) Derive an expression for the power gain in CMOS mixers.
(b) Discuss the phenomena of input matching for Low Noise Amplifiers. $\quad \mathbf{7 . 5} \times \mathbf{2}=\mathbf{1 5}$
6. (a) With neat sketches, explain the phase noise mechanism in oscillation.
(b) Write a note on Q of an oscillator and derive an expression for an open loop Q .
$7.5 \times 2=15$
(2-20) M-CC-766
3
P.T.O.
