http://www.dcrustonline.com

Unit IV

7.	(a)	Write	basics	of	full	color	image
		process	sing.				8
	(b) Explain HIS color model.						7
8.	Write short notes on the following :						
	(a)	RGB (Color Mo	odel			7
	(b)	Intensity Slicing.					8

No. of Printed Pages : 04 Roll No.

18BB1153

Ph.D. (Course Work) **EXAMINATION, May 2019** (ECE) MTEC520C ADVANCED DIGITAL IMAGE PROCESSING

Time : 3 *Hours*] [Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt *Five* questions in all, selecting at least one question from each Unit.

M-18BB1153

4

30

(3-51/9) M-18BB1153

Unit I

1.	(a)	Compare spatial and frequency domain				
		processing of images. 5				
	(b)	Write formula for obtaining DFT and				
		IDFT for images. 5				
	(c)	What is multiresolution analysis ? Why				
		is it used ? 5				
2.	(a)	For a $2^{J} \times 2^{J}$ image, compute the number of elements in J + 1-level pyramid and				
		the compression or expansion ratio. 7				
	(b)	Obtain the Haar transformation matrix				
		for $N = 8$. 8				
		Unit II				

- 3. (a) Write spatial and frequency properties of noise.6
 - (b) Explain the method used to restore images in presence of noise only. Discuss the operation of three filters for this. 9

2

M-18BB1153

4. (a) Why estimation of degradation is required? Explain any *one* method for this.
6

(b) Explain the method of image restoration that can be used if image is corrupted by noise and degradation both. 9

Unit III

- 5. (a) What are advantages of image compression? Compare lossless and lossy compression.7
 - (b) What is digital image watermaking ?What are its applications ? Explain, why robust invisible watermarks are designed.8
- 6. (a) Explain role of illumination in thresholding.6
 - (b) How edges can be used to improve global thresholding ?9
- (3-51/10)M-18BB1153 3 P.T.O.