6. (a) Obtain the approximate value of $y(0.1)$ by Euler's method for the equation $y^{\prime}=\frac{y-x}{y+x}, y(0)=1$.
(b) Determine approximate value of $y(0.2)$ and $y(0.4)$ from $y^{\prime}=-x y^{2}, y(0)=1$ by Runge-Kutta method of 4th order by taking $h=0.2$.
7. (a) Solve $y^{\prime}=1+y^{2}, y(0)=0$ by a predictor corrector formula from $x=0.2$ to $x=0.8$ by taking $h=0.3$.
(b) Using finite difference method, solve the boundary value problem :
```
y'}=x\mp@subsup{y}{}{\prime}-y-\mp@subsup{x}{}{2}\mathrm{ subject to }y(0)=-
and y(1)=1 by taking h=0.25.
```


0121

Ph.D. (Course Work)

EXAMINATION, May 2019
MAT902

MATHEMATICS

NUmerical Analysis

Time : 3 Hours]
[Maximum Marks : 100
Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note : Attempt any Five questions. All questions carry equal marks.

1. (a) Discuss in brief the main sources of errors.
(3-51/7) M-0121
P.T.O.
(b) Add $x=9.12345$ and $y=7.654321$ in a five-digit decimal computer. Also compute absolute total error, absolute propagated error and relative total error.
2. (a) Compute a real root of $2^{x}-3 x=0$ in the interval $0 \leq x \leq 2$ by the bisection method taking at least 5 iterations.
(b) Find the rate of convergence of Newton's method for obtaining the solution of the equation $f(x)=0$.
3. (a) Using Newton's method solve the following system of non-linear equations with three unknown upto 3 iterations :

$$
\begin{array}{r}
x-0.1 y^{2}+0.05 z^{2}-0.7=0 \\
y+0.3 x^{2}-0.1 x z-0.5=0 \\
\text { and } z+0.4 y^{2}+0.1 x y-1.2=0
\end{array}
$$

(b) What do you mean by polynomial interpolation and Hermit interpolation and also construct the Lagrange's polynomial with the following data :

x_{i}	$:$	-1	0	2	5
y_{i}	$:$	10	7	7	22

4. (a) Under what conditions Gaussian quadrature formula is used for numerical integration ? Compute $\int_{0}^{1} \cos x \log _{e}^{x} d x$ using Gaussian quadrature formula.
(b) Using Simpson's $\frac{1}{3}$ rd rule show that approximate value of $\log _{e} 2$ is 0.69315 .
5. (a) Describe Richardson extrapolation in derivative computation.
(b) Solve the initial value problem $y^{\prime}=x^{2}+y^{2}, y(0)=0$ using Taylor's series method for $0 \leq x \leq 0.4$ and $h=0.2$ by taking first four terms in Taylor's expansion.
P.T.O.
