- 6. (a) Obtain the approximate value of y(0.1) by Euler's method for the equation $y' = \frac{y x}{y + x}, y(0) = 1$
 - (b) Determine approximate value of y(0.2) and y(0.4) from $y' = -xy^2$, y(0) = 1 by Runge-Kutta method of 4th order by taking h = 0.2.
- 7. (a) Solve $y' = 1 + y^2$, y(0) = 0 by a predictor corrector formula from x = 0.2 to x = 0.8 by taking h = 0.3.
 - boundary value problem: $y'' = xy' - y - x^2$ subject to y(0) = -2and y(1) = 1 by taking h = 0.25.

Using finite difference method, solve the

No. of Printed Pages: 04 Roll No.

0121

Ph.D. (Course Work) EXAMINATION, May 2019

MAT902

MATHEMATICS

NUmerical Analysis

Time: 3 Hours] [Maximum Marks: 100

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt any *Five* questions. All questions carry equal marks.

1. (a) Discuss in brief the main sources of errors.

(3-51/7) M-0121 P.T.O.

- (b) Add x = 9.12345 and y = 7.654321 in a five-digit decimal computer. Also compute absolute total error, absolute propagated error and relative total error.
- 2. (a) Compute a real root of $2^x 3x = 0$ in the interval $0 \le x \le 2$ by the bisection method taking at least 5 iterations.
 - (b) Find the rate of convergence of Newton's method for obtaining the solution of the equation f(x) = 0.
- **3.** (a) Using Newton's method solve the following system of non-linear equations with three unknown upto 3 iterations:

$$x - 0.1y^{2} + 0.05z^{2} - 0.7 = 0$$
$$y + 0.3x^{2} - 0.1xz - 0.5 = 0$$
and
$$z + 0.4y^{2} + 0.1xy - 1.2 = 0$$

M-0121 2

(b) What do you mean by polynomial interpolation and Hermit interpolation and also construct the Lagrange's polynomial with the following data:

 x_i : -1 0 2 5 y_i : 10 7 7 22

- 4. (a) Under what conditions Gaussian quadrature formula is used for numerical integration? Compute $\int_{0}^{1} \cos x \log_{e}^{x} dx$ using Gaussian quadrature formula.
 - (b) Using Simpson's $\frac{1}{3}$ rd rule show that approximate value of $\log_e 2$ is 0.69315.
- **5.** (a) Describe Richardson extrapolation in derivative computation.
 - (b) Solve the initial value problem $y' = x^2 + y^2$, y(0) = 0 using Taylor's series method for $0 \le x \le 0.4$ and h = 0.2 by taking first four terms in Taylor's expansion.

(3-51/8) M-0121

3

P.T.O.